Serological assessment of neutrophil elastase activity on elastin during lung ECM remodeling
نویسندگان
چکیده
BACKGROUND During the pathological destruction of lung tissue, neutrophil elastase (NE) degrades elastin, one of the major constituents of lung parenchyma. However there are no non-invasive methods to quantify NE degradation of elastin. We selected specific elastin fragments generated by NE for antibody generation and developed an ELISA assay (EL-NE) for the quantification of NE-degraded elastin. METHODS Monoclonal antibodies were developed against 10 NE-specific cleavage sites on elastin. One EL-NE assay was tested for analyte stability, linearity and intra- and inter-assay variation. The NE specificity was demonstrated using elastin cleaved in vitro with matrix metalloproteinases (MMPs), cathepsin G (CatG), NE and intact elastin. Clinical relevance was assessed by measuring levels of NE-generated elastin fragments in serum of patients diagnosed with idiopathic pulmonary fibrosis (IPF, n = 10) or lung cancer (n = 40). RESULTS Analyte recovery of EL-NE for human serum was between 85% and 104%, the analyte was stable for four freeze/thaw cycles and after 24 h storage at 4°C. EL-NE was specific for NE-degraded elastin. Levels of NE-generated elastin fragments for elastin incubated in the presence of NE were 900% to 4700% higher than those seen with CatG or MMP incubation or in intact elastin. Serum levels of NE-generated elastin fragments were significantly increased in patients with IPF (137%, p = 0.002) and in patients with lung cancer (510%, p < 0.001) compared with age- and sex-matched controls. CONCLUSIONS The EL-NE assay was specific for NE-degraded elastin. The EL-NE assay was able to specifically quantify NE-degraded elastin in serum. Serum levels of NE-degraded elastin might be used to detect excessive lung tissue degradation in lung cancer and IPF.
منابع مشابه
Neutrophil elastase in human atherosclerotic plaques: production by macrophages.
BACKGROUND Catabolism of the extracellular matrix (ECM) contributes to vascular remodeling in health and disease. Although metalloenzymes and cysteinyl proteinases have garnered much attention in this regard, the role of serine-dependent proteinases in vascular ECM degradation during atherogenesis remains unknown. We recently discovered the presence of the metalloproteinase MMP-8, traditionally...
متن کاملBiomarkers of extracellular matrix turnover are associated with emphysema and eosinophilic-bronchitis in COPD
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by airflow obstruction and loss of lung tissue mainly consisting of extracellular matrix (ECM). Three of the main ECM components are type I collagen, the main constituent in the interstitial matrix, type VI collagen, and elastin, the signature protein of the lungs. During pathological remodeling driven by inflammatory cell...
متن کاملLocalization and stretch-dependence of lung elastase activity in development and compensatory growth.
Synthesis and remodeling of the lung matrix is necessary for primary and compensatory lung growth. Because cyclic negative force is applied to developing lung tissue during the respiratory cycle, we hypothesized that stretch is a critical regulator of lung matrix remodeling. By using quantitative image analysis of whole-lung and whole-lobe elastin in situ zymography images, we demonstrated that...
متن کاملLung matrix and vascular remodeling in mechanically ventilated elastin haploinsufficient newborn mice.
Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln(+/-)) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would...
متن کاملDynamic expression of chymotrypsin-like elastase 1 over the course of murine lung development.
Postnatal lung development requires coordination of three processes (surface area expansion, microvascular growth, and matrix remodeling). Because normal elastin structure is important for lung morphogenesis, because physiological remodeling of lung elastin has never been defined, and because elastin remodeling is angiogenic, we sought to test the hypothesis that, during lung development, elast...
متن کامل